
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

UNL Faculty Course Portfolios Peer Review of Teaching Project

2018

Benchmark Portfolio for SOFT 261: Software
Engineering IV
Suzette Person
University of Nebraska-Lincoln, sperson@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/prtunl

Part of the Higher Education Commons, and the Higher Education and Teaching Commons

This Portfolio is brought to you for free and open access by the Peer Review of Teaching Project at DigitalCommons@University of Nebraska - Lincoln.
It has been accepted for inclusion in UNL Faculty Course Portfolios by an authorized administrator of DigitalCommons@University of Nebraska -
Lincoln.

Person, Suzette, "Benchmark Portfolio for SOFT 261: Software Engineering IV" (2018). UNL Faculty Course Portfolios. 117.
http://digitalcommons.unl.edu/prtunl/117

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/189482946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fprtunl%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/prtunl?utm_source=digitalcommons.unl.edu%2Fprtunl%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/peerreviewteaching?utm_source=digitalcommons.unl.edu%2Fprtunl%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/prtunl?utm_source=digitalcommons.unl.edu%2Fprtunl%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1245?utm_source=digitalcommons.unl.edu%2Fprtunl%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/806?utm_source=digitalcommons.unl.edu%2Fprtunl%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/prtunl/117?utm_source=digitalcommons.unl.edu%2Fprtunl%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

Peer Review of Teaching Program 2017-2018

Benchmark Portfolio

for

SOFT 261: Software Engineering IV

Spring 2018

Prepared by:

Suzette Person

Department of Computer Science and Engineering

University of Nebraska-Lincoln

suzette.person@unl.edu

www.manaraa.com

2

Table of Contents
Abstract ... 3

Choosing SOFT 261 for a Peer Review Course Portfolio .. 4

Background ... 4

Key Goals.. 5

Course Description.. 6

Goals and Objectives of the Course .. 6

Rationale ... 6

Context .. 8

Enrollment and Demographics ... 8

Teaching Methods, Course Materials and Outside Activities .. 8

Module 1 - Methods and Rationale ... 9

Module 2 - Methods and Rationale ... 11

Module 3 - Methods and Rationale ... 12

Course Materials ... 13

Outside Activities.. 14

The Course and the Broader Curriculum .. 16

Analysis of Student Learning.. 17

Analysis of Selected Assignments .. 18

Analysis of Student Perceptions ... 24

Summary of Planned Changes .. 26

Summary and Overall Assessment of the PRT Portfolio Process .. 28

Appendix A ... 29

Appendix B ... 38

Appendix C ... 41

Appendix D ... 44

Appendix E ... 46

Bibliography ... 49

www.manaraa.com

3

Abstract

This benchmark portfolio documents the course objectives, teaching strategies, and assessments

for the inaugural offering of SOFT 261: Software Engineering IV at the University of Nebraska-

Lincoln (UNL). This is the final course in the core sequence of software engineering courses

taken by students in the new undergraduate program in software engineering at UNL. These

courses teach fundamental computer science concepts in the broader context of engineering

software. As an ACE (Achievement-Centered Education) 2 course, the instructional material in

SOFT 261 is focused on teaching visual communications skills in the context of applying

software engineering processes to a real-world software project. This portfolio describes the

course objectives and how this course fits into the broader context of software engineering

education at UNL. It also describes the instructional strategies used to teach visual

communications embedded in a software engineering course and the assessments used to

evaluate student learning. This portfolio also analyzes student learning to assess the effectiveness

of the teaching strategies and course materials. Finally, this portfolio reflects on the intellectual

challenges of designing and teaching a visual communications course specifically for software

engineering majors that incorporates team-based, hands-on learning working with and

communicating with software developers on a large open-source project.

www.manaraa.com

4

Choosing SOFT 261 for a Peer Review Course Portfolio

Background

During their first two years in the software engineering program, students complete four core

software engineering courses. These courses were designed following a Software Engineering

First (SE-first) model1, where software engineering concepts are taught early in the program and

integrated with core computer science topics to provide a context for learning and applying

computing concepts. The alternative model, Computer Science First (CS-first), which is the

traditional model for teaching undergraduate software engineering, is focused primarily on

teaching computer science concepts during the first two years, followed by two years of

primarily software engineering courses. To the best of our knowledge, the UNL software

engineering program is the only SE-first program in existence anywhere in the world. Although

there is no clear evidence to show one model is better than the other model, we believe that

existing undergraduate software engineering programs have chosen the CS-first approach for

financial reasons and the ready availability of books and materials, rather than for merits related

to student learning. Our decision to choose the SE-first model for UNL’s undergraduate program

in software engineering was motivated by our teaching experience and our previous experience

as practicing software engineers. It was made possible through the support of the university

administration. We believe than an SE-first curriculum has the potential to inform students early

in their academic studies what a career in software engineering looks like. It also encourages

students to think like an engineer from the beginning, learning and practicing the many

engineering activities involved in developing and maintaining real-world software systems

beyond coding. An SE-first curriculum also has the potential to discourage bad habits (e.g.,

hacking code together) and to encourage students who may excel at non-coding activities (e.g.,

design).

Our goal in choosing to build a teaching portfolio for this particular course is to describe our

experiences and outcomes in developing an SE-first course that:

• Is primarily focused on communication skills,

• Provides students with experience using disciplined software engineering process

models, and

• Enables students to contribute to a real-world software project and communicate with

software developers on that project.

As was the case with the other three courses in the software engineering core, there were no

models for us to use in the design of this course. This challenged us to think deeply about how

we could leverage research-based instructional strategies to teach a course that inter-weaves

teaching of visual communication with teaching of software engineering, and that supports

student contributions to an open-source project. We also were challenged (and to some extent,

guided) by the fact that the course is required to meet specific requirements in order to fulfill the

UNL ACE 2 certification requirements. The motivation for developing SOFT 261 as an ACE

course is based on our recognition that verbal and visual communication skills are essential for

success in the field of software engineering. We believe that by teaching an integrated studies

course combining technical and non-technical topics, students can learn to appreciate the value

of non-technical skills in their technology field of study.

https://ace.unl.edu/

www.manaraa.com

5

Although we faced significant challenges in creating this course, we also had several advantages

working in our favor. First, we designed and taught the first three courses in the software

engineering core, so we were intimately familiar with the software engineering material the

students had learned in the previous three semesters. Second, we were well acquainted with the

students in the program and their abilities. The students who participated in the inaugural version

of SOFT 261 are the first cohort through the software engineering program. They have formed a

strong bond with each other as the “test subjects” for our new curriculum and have been willing

to provide candid (and valuable) feedback on the course activities and materials for all of the

core courses.

Key Goals

Designing a curriculum that is unique in how and when it delivers content presents significant

challenges. But at the same time, it also provides tremendous opportunities to think about

teaching in new and exciting ways. The primary challenges of designing Software Engineering

IV include:

• The lack of course materials that integrate computer science, software engineering, and

visual communications into a single course,

• A need to create a course that is scalable to handle the rapid growth in the program,

• A desire to create a course that provides opportunities for students who are drawn to, and

excel in, the non-coding aspects of software engineering; to provide encouragement and

an environment where they can build on their strengths and excel in the field of software

engineering, and

• A desire to create a course where students learn communication skills and their

importance in software engineering by working with practicing software developers and

by contributing to a real-world software system.

My key goals for creating this portfolio were to:

• Apply the Peer Review of Teaching process to create the Software Engineering IV course

such that the course objectives, activities and assessments are aligned, and the course:

o Continues the themes set in the first three courses,

o Uses backward design2 principles and our experiences in teaching the first three

core courses,

o Provides a capstone experience, and

o Is scalable without diminishing the quality of student learning.

• Create a living document to:

o Support assessment and refinement of the course over time as we learn what

strategies are effective for teaching software engineering and communication

skills to students during the first two years of an undergraduate program,

o Provide a guide to future instructors of the course,

o Demonstrate the merits of my teaching for reappointment and promotion,

o Support the ACE 2 certification process, and

o Provide evidence and supporting information for the dissemination of our

experiences and success in teaching an SE-first curriculum.

www.manaraa.com

6

Course Description

Software Engineering IV (SOFT 261) is a sophomore-level course offered once each year, during

the spring semester. It is open only to software engineering majors. The focus of Software

Engineering IV is on the UNL Achievement Centered Education (ACE) 2d requirements--

producing or interpreting visual information. In this course, students learn and practice

techniques for creating visualizations to communicate ideas. They also learn visual literacy

skills. Both are taught in the context of designing, building, analyzing, and maintaining software

using disciplined software development processes and tools to complete a capstone project.

Students attend two 75-minute class meetings each week with the instructor(s), and one two-hour

lab session each week led by a graduate teaching assistant (TA). The format of the instructor-led

class meetings is primarily short interactive lectures followed by guided active learning exercises

or team time. Class meetings also include student presentations and guest lectures. Lab sessions

are a combination of guided learning activities, in which students practice the application of

software engineering concepts, and time for students to work on their capstone project.

Attendance at all class meetings and lab sessions is mandatory; unexcused absences result in the

student losing attendance points. For the inaugural offering, the course was taught by myself and

another professor of practice, Dr. Brady Garvin.

Goals and Objectives of the Course

Software is developed by teams of people, often with diverse backgrounds, skills, and interests.

Some team members may have a technical background, while other team members may

represent the clients or users who have limited or no technology background. The ability to

effectively communicate ideas and concepts to both technical and non-technical audiences is

critical for success in software engineering. The primary objectives of Software Engineering IV

are to prepare students to work individually and in teams to:

1. Visually communicate software engineering concepts to both technical and nontechnical

audiences,

2. Formulate and communicate constructive feedback on visualizations and content in peer

communications, and

3. Apply disciplined software engineering principles, and recognized practices, to software

development and maintenance.

These objectives contribute to Student Learning Outcomes 1 and 2 in the UNL software

engineering program, and support the ABET Student Outcomes (a), (c)-(e), (g) and (k) and the

ABET “Software and Similarly Named Engineering” program criteria.

Rationale

The objectives for this course were chosen based on the requirements for an ACE 2 course at

UNL and the importance we placed on teaching non-technical skills during the design of the

software engineering program. Below, we elaborate on our rationale for choosing each learning

objective.

https://catalog.unl.edu/undergraduate/engineering/software/#text
http://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2018-2019/#outcomes
http://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2018-2019/#criteria

www.manaraa.com

7

Objective 1: Visually communicate software engineering concepts to both technical and

nontechnical audiences.

In software engineering, as with any discipline that deals with complex systems, diagrams and

visual representation are commonly used to communicate ideas when brevity or succinctness is

required (e.g., during an oral presentation). In the first year of the software engineering program,

students learn how to visually represent information about code using control-flow graphs, call

graphs, class diagrams, etc. However, these graphs and diagrams are not useful for representing

large, complex systems, or for non-technical audiences. Software engineers also need to be able

to communicate ideas at a higher level of abstraction (e.g., at the system level) to both technical

and non-technical audiences. Visualizing abstract ideas is hard. It requires the ability to 1)

internalize the complex idea or concept in order to identify the key elements necessary to convey

the idea, 2) frame the content for the audience by choosing the appropriate terminology, visual

idioms, etc., and 3) create the visualization by integrating all of the sub-parts. By learning and

practicing the application of these skills using established design principles, students can

improve their ability to communicate complex ideas and concepts. They can also improve their

confidence in working with diverse audiences and overcome a common misconception that

visual communication requires artistic talent.

Objective 2: Formulate and communicate constructive feedback on visualizations and content in

peer communications.

By practicing formal and informal reviews of peers’ work, students learn how to interpret visual

information (e.g., visual literacy skills) while also discovering the diverse ways in which ideas

can be represented visually. Students also learn and apply established metrics for evaluating

communication artifacts, and they practice critical thinking skills by providing constructive,

specific, and actionable feedback (positive and negative) to their peers. Through this form of

peer learning, students have the opportunity to observe and learn from other students how (and

how not to) communicate visual information.

Objective 3: Apply disciplined software engineering principles, and recognized practices, to

software development and maintenance.

Throughout the core software engineering courses, students learn that software engineering is

much more than programming (i.e., writing code). Software engineers spend a considerable

amount of time on non-programming tasks including researching ways to solve problems and

studying code to understand how it works, how it can be changed, and to locate errors in the

code. They also plan how they will change the code and how they will test their changes, and

they spend time meeting with clients and team members to talk about the software and to discuss

the status of the software. This wide range of activities relies not only on strong technical skills,

but also on strong teamwork, time management, planning, and communication skills. However,

in the first three core courses, software engineering majors are primarily focused on learning

foundational technical knowledge and skills, resorting to ad hoc processes to facilitate teamwork

and communication. This lack of instruction in these “soft” skills during the first three semesters

provides the students with multiple opportunities to experience first-hand, the risks and impact of

working without structured processes and good communication skills. By the end of SOFT 261,

www.manaraa.com

8

students will have worked on two capstone assignments providing numerous opportunities to

learn and appreciate the value and impact of the rigorous software development processes and

communication skills taught in the course.

Context

The UNL software engineering major was launched in Fall 2016 when SOFT 160 and SOFT 161

were offered for the first time. SOFT 260 and SOFT 261 (the course presented in this portfolio)

were first offered in Fall 2017 and Spring 2018 respectively, when the first cohort of majors

entered the second year of their program. The software engineering major is one of three majors

offered by the Department of Computer Science and Engineering at the University of Nebraska-

Lincoln. It was developed in response to the increasing demand for software engineers both

locally and nationally. It was made possible due to the availability of a top-ranked software

engineering research faculty. The software engineering major is offered through the UNL

College of Engineering and requires students to complete 124 credit hours of study, including a

required internship. Once the program is fully established, the Department will seek accreditation

from ABET.

This course (Software Engineering IV) fits into the overall software engineering undergraduate

curriculum as the fourth, and final course in the core course sequence. At the end of Software

Engineering IV, students are expected to have the technical and non-technical skills and

knowledge to succeed in upper-level courses in both software engineering and computer science.

They are also expected to be prepared for their two, year-long capstone experiences in which

they work with students in other majors on projects sponsored by members of industry.

Enrollment and Demographics

Students in the inaugural offering of SOFT 261 are the first cohort of software engineering

majors at UNL. Because the software engineering program follows a cohort model, the majority

of the students in SOFT 261 have studied software engineering together for the previous three

semesters (although a small number of students joined the cohort in the third semester after

taking a bridge course). The students have previously worked in instructor-assigned teams on

courses projects and in randomly assigned pairs during labs in the previous three core courses. In

the first offering of the course, we started with 19 students in a single section (18 students

completed the course). In Spring 2019 we anticipate the course will be offered to 40-45 students

split into two sections. Once the major is fully established, we expect to offer this course each

spring to two or more sections of 40-45 students each.

Teaching Methods, Course Materials and Outside Activities

SOFT 261 is organized into three modules. In each module, we utilize a combination of peer

learning (e.g., think-pair-share3), in-class activities working in small teams (2-4 students), guided

lab activities, and interactive lectures. We also use class time for student presentations and for

guest lectures (e.g., Software Engineering in Practice (SEIP) and Software Engineering in

Research (SEIR) presentations). All three modules also use journal assignments, outside

http://www.abet.org/

www.manaraa.com

9

activities, and assessments. The daily learning objectives are posted along with the assignments

on the course website. The course syllabus and schedule are included in Appendix A.

The choices made in the selection of teaching methods, materials and activities were made based

on our experiences in teaching the previous three software engineering courses. We specifically

chose to:

• Continue with the same basic approach to teaching software engineering, but with less

structure in order to prepare students for their capstone course,

• Create a project-based course where students apply what they have learned in the

previous three core software engineering courses, but replace ad-hoc processes with

structured processes that leverage established best practices,

• Continue to use SEIP an SEIR presentations to expose students to how the material they

are learning is applied in practice and in research, and

• Develop a course that enables students to contribute to an open source project and work

with real-world software developers.

Module 1 - Methods and Rationale

The first module is the course introduction and covers the first two weeks of the semester. In this

module the students are introduced to the basic components of effective communication,

including visual communication. We also introduce disciplined software process methodologies.

These methodologies enable development of large complex software systems and facilitate

communication between team members and between the developers and stakeholders. Our

motivation for exposing students to all of the main course topics in the first module is to

highlight the underlying relationships between topics and to motivate the importance of

communication skills in software engineering.

For most class sessions in the first module, our approach to teaching is to introduce the topic for

the day through a brief interactive lecture at the beginning of class. Student participation is

facilitated through the use of index cards to call on students to answer pre-planned (or

spontaneous) questions and prompts. Cards are created during the initial class meeting when

each student writes his or her preferred name on an index card provided by the instructors. The

instructor then brings the cards to each class meeting and calls on the student whose name is on

the top of the deck (we occasionally shuffle the cards). The number of students called on during

a class meeting depends on the length of the lecture and the number of questions posed to the

students. The cards can also be used for taking attendance (we write a tally mark or a date the

student is absent or late) and for assigning pairs or teams. Students are free to raise their hand to

ask questions or make comments during the lecture, however, questions posed by the instructor

are answered by calling on one or more students using the note cards, rather than asking for

volunteers to answer a question. This approach to class participation is used in all of the core

software engineering courses. It provides a mechanism to engage all students in the discussion

without bias. Student feedback on the use of cards indicates it helps them remain engaged during

class and also encourages them to come to class prepared knowing that they may be called upon

to answer a question during class. During lectures, we also use a think-pair-share technique to

encourage students to explore and share their own ideas on a topic with each other prior to

sharing with the class as a whole.

www.manaraa.com

10

In-class activities are typically performed in assigned pairs or small groups. These guided

activities include instructions and discussion questions provided by the instructors. Some

activities involve students sharing what they have learned from the activity with the rest of the

class. To complete an activity, students are expected to use the resource(s) provided by the

instructors, locate resources on the Internet, and to draw on their experiences in the previous

three semesters of software engineering courses. For instance, in the first class meeting each

student pair is assigned to research a communication skill relevant to software engineering and

use the Google slide template provided by the instructor to record their answers to three prompts

“When is the communication skill important in software engineering?”, “Why is the

communication skill important in software engineering?” and “What does the communication

skill look like when done well?”. At the end of class, each pair of students provides a brief (2

minute) summary of their assigned communication skill.

Our rationale for using brief interactive lectures followed by hands-on activities is three-fold: 1)

to encourage students to become independent learners by making them share the responsibility

for their learning, rather than taking the role of passive learner and expecting the instructor to

provide all of the information, 2) to promote peer teaching and mentoring, a skill that is widely

used by practicing software engineers and has also been shown to be an effective learning

technique for students, and 3) to provide regular communication skills practice by requiring

students to solve problems as a team and report back to the class with their solutions. After

teaching SOFT 261 using this approach, we have found that this combination of interactive

lecture and in-class activity is engaging for both the students and the instructors, and it also

enables us, as instructors, to better understand the capabilities of students in terms of independent

and peer learning—information that we are using to improve the course.

In the two lab sessions in this module (taught by a graduate teaching assistant), students work in

their assigned project teams to set up tools and to research technologies they will use to complete

the capstone project in modules 2 and 3. They also begin developing the proposal for their

capstone Phase I project. For this assignment, each team of students designs and develops

software that builds on the open source project specified by the instructors. Unlike the highly

structured lab instructions in the previous three software engineering core courses, the lab

instructions for SOFT 261 (provided by the instructors) are much less specific in how to

accomplish each task. The lack of specificity challenges students to think critically about how to

solve problems posed in the lab. The lack of structure forces the students to practice time

management skills in order to complete all of the tasks. Our rationale for providing less

structured labs than previous semesters is to provide a model of software engineering that more

closely resembles the real-world, while still providing the students with a general framework for

achieving the learning objectives.

The in-class activities and lab activities in module 1 are primarily intended to provide active

learning opportunities that reinforce the concepts presented during the interactive lectures.

Students also practice important skills, such as collaboration and communication. These

activities also include formative assessments that provide students with real-time feedback, and

instructors with insight into student learning. For instance, artifacts created by the students

during class (e.g., the slides linking communication skill and software engineering created on the

https://docs.google.com/presentation/d/18uDL9REyB8NNExWBs2uf2gx35VwQPbRfxar33IyRIXY/edit?usp=sharing

www.manaraa.com

11

first day) are reviewed by the instructors for accuracy, misconceptions, etc. and the findings

integrated into a subsequent class or activity and used to inform changes to the next version of

the course. Lab checkpoints also serve as formative assessments, enabling the lab teaching

assistants to check student learning at pre-defined points in the lab and to provide feedback and

Just-In Time Teaching (JiTT) instruction when necessary. The outside class activities in this

module include reading assignments and journal assignments as shown in the course syllabus in

Appendix A.

Module 2 - Methods and Rationale

In the second module (lasting approximately five weeks), students begin to apply visual literacy

skills and software engineering processes and tools. Students work in instructor-assigned teams

of four students to build software based on a large open source project. In the inaugural offering

of SOFT 261, the students worked on OpenMRS, an open source medical records system that

they had been working with in previous software engineering core courses. During this module,

student learn and practice an Agile software development process widely used in industry

(Course Objective 3). Students track and report progress using an on-line project management

tool that supports Agile software development. Intra-team communication and communication

with the instructors and TAs is through on on-line communications tool, Slack. At the beginning

of each lab and once a week in class, students also provide brief oral status updates to their team

members through a stand-up meeting.

During this module, students also learn basic visualization concepts and a structured process for

turning an idea into a visualization that effectively communicates that idea (Course Objective 1).

Students practice applying the process to the development of a visualization that describes the

architecture of the software they have developed. At the end of the module, student teams peer-

review their architecture diagrams as an in-class activity (Course Objective 2) and use the input

from the peer review to prepare to the final version of the diagrams. The diagrams are then used

in a project hand-off presentation to the class.

Teaching methods in this module are relatively the same as module 1. Interactive lectures are

used at the beginning of a class session and hands-on activities fill the remainder of the class

session. Students also attend a weekly lab session with the teaching assistants to work on their

capstone assignment. At the end of the module, two days are used for team presentations and one

day of the module is used for an SEIP talk. During the inaugural offering of SOFT 261, the SEIP

talk focused on the importance of architecture and the value of the Agile software development

process in helping manage problem complexity. In addition to lab time, students have several

class sessions for team time—most sessions are guided activities intended to help them complete

their capstone activities (e.g., create a draft of their presentation). During this module, many of

the journal assignments ask the students to reflect on their capstone experiences, relating it back

to the reading assignments in “What Makes a Great Engineer.” During this phase, we also used

short quizzes during three lab sessions as a formative assessment of software engineering

concepts. In previous software engineering courses, lab quizzes with 2-3 short-answer questions

were administered across the semester. On each quiz students practiced the application of

concepts recently taught in class. Quizzes toward the end of the semester were also used to help

the students review for a cumulative final exam. In SOFT 261, the format of the questions was

https://en.wikipedia.org/wiki/Just-in-time_teaching
http://openmrs.org/
https://taiga.io/
https://taiga.io/
https://slack.com/
https://en.wikipedia.org/wiki/Stand-up_meeting

www.manaraa.com

12

changed to multiple choice and multiple true-false with the intention of simplifying the grading.

Students in SOFT 261 did very poorly on these assessments and the quizzes were dropped from

the students’ grade completely. We analyze why students performed poorly in the Section

“Analysis of Student Learning.”

Teaching how, when and how often to communication software status information is

challenging. Company policies, practices and procedures vary greatly. Software is always

changing. Software systems are huge and complex. All of these factors impact how software

engineers communicate. In this module students also learn technologies and tools related to

developing and managing software. They experience first-hand, the importance of planning their

work and practice time management skills. Although we assigned readings from various sources

on the Internet, we were able to find mostly very general information, so we relied heavily on

guided hands-on activities and the capstone assignment to teach this module. To offset the risks

of hands-on learning, we used class time to deliver JiTT instruction when we observed students

struggling either with technology, communication, or process issues. For instance, students

struggled to learn the MVC architecture model used by OpenMRS, and therefore had difficulty

developing a module. After recognizing this issue, we developed an in-class lecture to help the

students learn the architecture. In another instance, we noticed that the students were not

applying the visualization process we taught in class. Instead, they were applying ad-hoc

processes that omitted many of the planning steps or omitted steps that leverage established

visual communications practices. Following this observation, we created an in-class activity that

included checkpoints for the instructors to evaluate the application of the process in addition to

the end result (i.e., visualization). Although we believe the methods selected for delivering the

course material were effective, we also believe that students need more instruction, particularly

instruction they can later reference, since most students did not appear to take notes during class

(we do not know why this is the case).

Module 3 - Methods and Rationale

In the third module (lasting approximately seven weeks), the students are assigned to new teams

of three students each (four, if necessary to balance the teams). The student teams work with the

same open source project to perform software maintenance tasks that extend their

communication practices to involve the project developers. For this “maintenance” phase of the

project, each team is focused on locating and performing one documentation task, one bug fix or

new feature task, and one testing task for the open source. The students use the open source

project’s issue tracker, continuous integration server results, the various sub-projects’ GitHub

activity information, and the project’s website and wiki pages to locate tasks. Students ask for

clarification and assistance from the project’s developers and explain their ideas and proposals

through on-line forums, issue tracker comments, and pull requests (i.e., a communication

mechanism for specifying information about a proposed software change). Students use an Agile

software process model (Course Objective 3), and again track progress using an on-line project

management tool. Intra-team communication and communication with the instructors and TAs is

through an on-line communications tool, Slack.

During Module 3, students also continue to practice visual communication skills (Course

Objective 1) by creating visualizations that document their contributions to the open source

https://taiga.io/
https://taiga.io/
https://slack.com/

www.manaraa.com

13

project. Each student presents his or her visualization in an oral project status report to fulfill of

Homework Assignment 3.6. The student teams also create several visualizations for use in thei

in-class “release meeting” presentation at the end of the semester. To meet Course Objective 2,

students peer review the visualizations during an in-class exercise. Each student also provides a

written evaluation of and feedback on the team presentations and visualizations using a rubric

provided by the instructors (including a self-evaluation). For the SOFT 261 final exam, students

attend presentations by students in the year-long capstone course and provide a written

evaluation and feedback for two presentations. They also create a new visualization or a modify

a visualization for one of the presentations to help improve how the information is

communicated in the presentation.

Our teaching methods in this module are primarily hands-on activities. Three class sessions were

used for individual student presentations. While each student presented a status report to his or

her team, the instructors and the TAs, the rest of the teams had time to work on their projects.

These oral status reports enabled the instructors to provide feedback to the teams on their

projects and to answer questions from the team, while also allowing the instructors to assess

individual student’s visualization and communication skills. The last two class meetings were

dedicated to team presentations. One class session was dedicated to a Software Engineering in

Research (SEIR) talk, and another class session was used for a Software Engineering in Practice

(SEIP) presentation. The SEIP talk focused on communicating visually on the white board. One

notable point made by this speaker that several students commented on in their journals is the

fact that it is not necessary to be an artist to create effective visualizations. In addition to the

capstone assignment, students continued to maintain journals during this module, and they

completed two homework and two take home exams during this module.

Our rationale for the teaching methods in this module is similar to the previous module—provide

students with hands-on experience working on a large-scale software system while providing

minimal structure and support. We also want the students to learn how to communicate with real-

world software developers. This introduces new challenges in that project team members are

from all over the world. Students learn the impact of timing on their communications, and the

need to fully the describe the problem or issue, to reduce the number of information exchanges

and therefore the amount of time waiting to resolve an issue. They also learn that they are

responsible for creating a context for their communications—the open source software is so large

and so complex, the developers do not retain every detail of the software in their memory and

therefore need to be educated or reminded of the details on the part of the software where the

students are working. During the inaugural offering of the course, we realized we need to

explicitly teach these ideas because students learned them by trial and error which caused some

teams to have problems finishing their tasks—this was not our intention. We also recognize that

the number of assessments in this module is too high and some of the feedback comes too late.

Course Materials

Course materials that contribute to student achievement of the course learning outcomes include:

• Class lectures

• In-class activity worksheets

www.manaraa.com

14

• Weekly lab assignments

• Course website

• Piazza

• Journal questions

• Homework assignments

• Capstone project assignments

• Presentation rubrics

• 360 review form

• Quizzes

• Exams

In SOFT 261, the majority of class lectures are brief (approximately 15-20 minutes out of the 75-

minute class meeting) followed by an in-class activity. During class lectures, information is

generally presented on the whiteboard. Students are expected to take notes (i.e., lecture notes are

not made available). In-class worksheets are on-line (typically provided as a Google doc). One

member of each student groups makes a copy of the worksheet and shares it with his or her team

members and the instructors. Worksheets typically include instructions for completing the

exercise, space to respond to questions or prompts, and multiple checkpoints indicating when the

students are required to share their work with an instructor for signoff before continuing.

Students can also use the worksheets as a guide on their homework assignments. Weekly lab

assignments include learning objectives, a series of activities to be completed during the lab,

links to resources, and multiple checkpoints when the students are required to share their work or

status with a teaching assistant before continuing.

SOFT 261 student journal questions and prompts are posted weekly on the course website.

Questions cover concepts and material covered in class, lab, or in reading assignments, and

reflective questions related to the students’ learning goals and achievements and their

experiences on the capstone project. Piazza (an on-line Q&A forum) is used to post

announcements and for students to post questions about the course and assignments. SOFT 261

homework assignments assess students’ ability to independently apply concepts learned in class.

These assignments include learning objectives (based on course objectives 1 and 2), detailed

instructions for completing and submitting the assignment, and a detailed breakdown of how

points are assigned. The capstone assignments are team-based activities that provide students

with an opportunity to work in small teams to practice all of the course objectives in an

integrated manner. These assignments also provide high-level instructions (what versus how) for

completing the assignment and a detailed breakdown of how points are assigned. The

presentation rubrics provide guidelines for how the instructors and students evaluate the student

presentations, and the 360 review form provides instructions and criteria the students use to

evaluate their own contributions and the contributions of their team members at the end of each

phase of the capstone project. Finally, the course quizzes assess the students’ knowledge of the

software engineering concepts taught in the course, and the two exams (mid-term and final)

assess students’ ability to visually communicate software engineering concepts and to formulate

and communicate constructive feedback on visualizations and content in peers’ communications.

Outside Activities

https://piazza.com/

www.manaraa.com

15

Students in SOFT 261 are expected to spend 8-12 hours each week on outside class activities

including individual homework assignments, take home exams, weekly journal assignments, and

team time spent working on the capstone project. Students are assigned a small number of

reading assignments (from sources available on the Internet) to complete outside of class. They

are also expected to research and independently learn the technologies necessary to complete

their capstone projects.

Homework assignments and take-home exams provide students with formative and summative

assessment opportunities to demonstrate their ability to work independently to 1) apply the visual

communication development process taught in class, 2) create communications that effectively

use the elements of visual communication to convey information, and 3) demonstrate their ability

to provide constructive, specific, and actionable feedback on communications created by other

students. The rationale for using homework and take-home exams for formative and summative

assessments in SOFT 261 (versus in-class assessments) is based on our observations that

students find the creative aspects of designing and developing visual communications daunting

and often require multiple iterations or multiple attempts to complete an assignment (i.e.,

requiring more time than would be available in a single class or lab session). We also prefer to

use class time for guided activities and to observe student performance as they apply the

software engineering and communication knowledge and skills.

Weekly journal assignments are used to guide student reading by providing study questions,

assess student understanding of material covered in class and in assigned readings, and to

provide students with an opportunity to reflect on their software engineering experience and

what they are learning in the course. Journal assignments are included in all of the software

engineering core courses. Journal assignments in SOFT 261 contain fewer concept questions

than previous semesters and instead include more opportunities for students to reflect on their

project experience and on the traits of a great software engineer (based on their reading of “What

Makes a Great Software Engineer”4). Our rationale for assigning journal questions as an outside

class activity is two-fold: 1) journals assignments provide a low-stakes formative assessment

opportunity for students to practice answering concepts questions and practice written

communication skills, and 2) journal answers provide instructors with key insights into areas

where students may be struggling, provide a one-on-one communication channel between the

student and the instructors, and inform instructors on students’ perceptions of the course and

their learning accomplishments.

Outside of class, students may also work on their capstone project assignments. Although some

amount of class time is set aside for teams to work on their projects beginning in middle of the

semester, the majority of the capstone work is performed in the weekly lab sessions or outside of

class. Due to the variability in the nature of the tasks, task difficulty, team dynamics, etc., some

teams may need to spend only a few hours outside of class and lab time working on their project,

while other teams may need to spend considerably more time working independently or together

on the project outside of class. The rationale for expecting students to work outside of class and

lab on the capstone project is that this unstructured work time provides students with additional

opportunities to practice communication and software engineering skills in a less structured

environment that more closely models the real-world.

www.manaraa.com

16

The Course and the Broader Curriculum

The UNL software engineering major is offered through the College of Engineering and requires

students to complete 124 credit hours of study, including a required internship. After completion

of SOFT 261, students take four advanced software engineering course, 15 hours of technical

electives, and two years of a year-long capstone course. Once the program is fully developed, the

Department will seek accreditation from ABET.

Software Engineering IV is open only to software engineering majors who have achieved a grade

of C+ or higher in each of the previous three core software engineering courses. It is primarily

intended to fulfill the students’ Achievement Centered Education (ACE) 2 requirement in the

context of engineering software. The ACE 2 requirements state that students will

“Demonstrate competence in communication skills in one or more of the following ways:

a. by making oral presentations with supporting materials,

b. by leading and participating in problem-solving teams,

c. by employing communication skills for developing and maintaining professional and

personal relationships, or

d. by producing and/or interpreting visual information.”

Although the course was designed to specifically address the ACE 2(d) requirement, students

practice all four components of ACE 2.

SOFT 261 was designed to continue the theme established in the first three core courses of

teaching an integrated software engineering and computer science curriculum. To the best of our

knowledge, the UNL software engineering program is the only program in existence anywhere

that follows the SE-first model of teaching software engineering concepts from the beginning.

Our choice of methods, material and activities for SOFT 261 assume students have learned

fundamental software engineering and computer science concepts. We also assume students have

experience developing software in teams. At the end of Software Engineering IV, students are

expected to have the technical and non-technical skills and knowledge to succeed in upper-level

courses in both software engineering and computer science. They are also expected to be

prepared for their two, year-long capstone courses in which they work with students from other

majors in the department on team projects sponsored by members of industry.

In the long term, we believe that teaching an SE-first curriculum will impact how students

approach software development. First, we believe that four semesters of applying software

engineering practices and tools, working on large scale software, working in teams, and learning

communication skills in the context of software engineering will enable and encourage the

students to solve computational problems with an engineering mindset. Students will be

equipped to apply these skills in advanced courses, in their capstone course, in their internships,

and in their careers post-graduation. Second, students who prefer the non-programming aspects

of software engineering (e.g., design, testing and analysis) will be exposed to those areas of

software engineering early in their academic careers and may be more inclined to stay in this

field of study. And third, we believe that by learning the value of good design and analysis, and

http://www.abet.org/

www.manaraa.com

17

the importance of writing high quality software, students will create software that is secure and

maintainable.

Analysis of Student Learning

Students in software engineering progress through the program as a cohort. At the beginning of

SOFT 261, the students have very similar computer science and software engineering

background knowledge because they have studied together for the previous three semesters (with

the exception of the small number of students who attend the bridge course between the second

and third semesters). Furthermore, the faculty who taught the inaugural offering of SOFT 261 are

the same instructors who taught the students in the previous three core software engineering

courses and the bridge course. This consistency in the student population and academic history

provided us with several advantages when writing the course 1) we were able to make certain

assumptions about the students’ technical knowledge base when deciding on the capstone

assignment, 2) we had a collection of teaching methods that the students were familiar with and

had helped shape through their feedback in earlier courses, and 3) the student cohort was small

and the students knew each other—even if they had not worked together on a team previously,

they had seen each in class or lab so they were familiar with each other. Another important

advantage we had was the relationship we had established with the first cohort of students. They

know they are helping to shape the software engineering curriculum and how it is delivered.

They also know that if something does not go well (e.g., the quizzes in SOFT 261—see below),

their grades will not be penalized for it.

The majority of the assessed course work in SOFT 261 is performed in teams of three or four

students. This work accounts for 55% of the students’ grades. Three homework assignments, two

take-home exams, several quizzes, and weekly journals facilitate individual assessment of the

learning objectives.

The quizzes used in SOFT 261 were ultimately dropped from the computation of the students’

final grades. The highest average score across the three quizzes was 79% and the lowest average

score was 37%. The quizzes were originally planned to account for 10% of the students’ final

grades. We updated the weight of the quiz scores towards the end of the semester, reducing it to

5%, but when we saw the impact on the students’ final grades, we dropped the quizzes

completely. Our rationale was that we could not confidently conclude that they accurately

reflected student learning. Although the scores were low, we felt that the format of the quizzes

(multiple choice and multiple true/false—formats we had not previously used) and the fact that

we had relied heavily on independent learning of the concepts early in the semester indicated that

the quizzes may not have been fair. In future offerings of this course, we plan to provide more

instruction and more formative assessments on concepts early in the semester. We also plan to

learn how to better use these assessment techniques to confidently assess student learning.

Journal grades in SOFT 261 account for 5% of the students’ final grades. Journals are assigned at

the beginning of the week and due at the beginning of the following week. To record their

journal entries, students create a Google doc that is shared with the instructors. The journal

scores for the semester ranged from 3.85% to 100%. Approximately one-third of the students

received 50% or less, one third scored 100%, and the other third scored between 61.5% and

www.manaraa.com

18

96.15%. Each journal assignment consists of 4-6 prompts. The entire assignment is worth a

maximum of two points; one point for effort and one point for professional writing. The

correctness of the responses is not considered. Journals assignments are used in all of the core

software engineering courses. In SOFT 261, the journal assignments tend to have more reflective

prompts (versus writing about concepts taught in class). In all of the software engineering core

courses, the journal entries are used for students to specify personal learning objectives for the

semester and to indicate where they expect to be challenged. The instructors view the journals as

a private communication link with the students and as a mechanism for assessing student

learning. The instructors record a comment in the Google Doc, providing feedback and a score.

Feedback includes brief comments providing clarification of a topic, encouragement to look a

resource to rethink their answer, or just an encouraging thought such as “Looks good!”. In SOFT

261, regular journal entries were submitted by 15 of the 18 students until the middle of the

semester, but towards the end of the semester, this number had dropped to approximately 13 of

18. Some students indicated they forgot about the assignments (the assignments are posted

weekly on the course website for all of the core software engineering courses). Other students

indicated they did not help their learning and therefore did not feel motivated to complete them.

Students also noted in passing comments that they had a lot of projects in their courses this

semester. We still believe that reflection is a valuable teaching method and plan to explore ways

to help motivate students to use their journals as a learning opportunity.

Analysis of Selected Assignments

This course has three primary goals. The first two are focused on communication skills in the

context of software engineering. These learning objectives can be thought of as foundational and

focused. The first learning objective targets the basic skills related to creating a visualization to

represent an abstract software engineering concept or idea. The second learning objective targets

the basic skills related to providing constructive, specific and actionable feedback on

visualizations and content in a peer communication of software engineering ideas. The third

learning objective addresses the integration of communication and software engineering skills

through the use of communication techniques and tools, along with software engineering

practices and methods, to engineer software for a real-world software system. In this section, we

describe a subset of the assignments used to assess student learning.

Learning Objective 1

To assess the first learning objective, we assigned Homework 1.4 at the beginning of the second

week of class. Students were given one week to complete the assignment. This formative

assessment asked students to create a features matrix to compare and contrast the features of the

software process models they were learning in the course. They were also assigned to write two

directed paraphrasings. Each paraphrasing provided the students with an opportunity to restate

his or her understanding of the software process models in two contexts and for two different

audiences. For the first paraphrasing, students were to write what they would say to a manager

who is considering changing the team’s software process model. In the second paraphrasing, the

students were to write what they would say to a junior developer regarding how to adapt to the

team’s process model and whether he or she should try to introduce agile processes. The primary

www.manaraa.com

19

objectives of the assignment were to assess the students’ ability to communicate their

understanding of the software process models and to assess their ability to represent information

using a basic visualization technique (a features matrix). Appendix B contains two examples of

student work submitted for Homework 1.4.

The Homework 1.4 assignment includes the definition of a features matrix and instructions for

creating the features matrix. Although most students were able to successfully create the matrix

layout (headings and labels in a grid fashion), they often chose labels that were ambiguous or

lacked sufficient detail to understand the concrete idea represented by the label. For example, in

Appendix B, the sample labeled Student A uses “Lengthy” and “Well Documented” as features

of the processes. In other student submissions, we also observed labels such as “Flexible,”

“Great Documentation,” “Risk Mitigation,” “Manageability,” and “Documentation.” These

labels do not articulate a specific feature of a software process model and therefore do not enable

the student to explain the differences and similarities between the software process models. This

type of error was common across the work submitted by the students. Some students also chose

features that do not help the reader distinguish between process models. Either students did not

clearly understand the differences and similarities or they were unable to clearly articulate the

them using a features matrix (or both). Although many students performed poorly on this

assignment, several students were able to create a features matrix using labels that were

somewhat better than the labels used by Student A (e.g., Assignment 1.4 from Student B in

Appendix B).

In the second part of the assignment (the directed paraphrasings), many students lost points on

the assignment due to basic writing mechanics (e.g., incorrect grammar, punctuation, etc.). Many

students also had difficulty applying their understanding of the models to write a brief

informative composition to a specific audience. The students also struggled to write persuasively

(e.g., to explain why one model is superior to another model). And, in some instances, students

wrote the paraphrasings as a stream of facts, rather than structuring the information to create a

coherent and connected set of ideas. One thing that surprised us was the conversational nature of

the paraphrasings submitted by several students (e.g., Assignment 1.4 from Student C in

Appendix B); we were expecting a paraphrasing that reflected a professionally written statement.

We believe the wording of the assignment “write what you would say to…” was confusing to the

students and changed this wording for Homework 3.8 (discussed below). From this assignment,

we learned that we need to be more careful in setting the expectations for an assignment and we

need to provide more basic instruction on communicating visually than we had originally

expected. We also believe that students struggled with the assignment because they did not really

know or understand the software models. In future offerings of this course, we will need to

provide more instruction on the software process models as well as how to visually represent

information, rather than expect the students to self-learn and peer-instruct on this material.

Due to the low scores on the first homework assignment, we assigned a similar assignment in the

third module, Homework 3.8. For this assignment, students created a features matrix comparing

three Agile software process models, two of which are models they used in class (Scrum and

Scrumban). The third model, Kanban, is very similar to a model they used in class. Students

were also asked to summarize the information in the matrix, focusing on the key differences and

practical implications. Additional instruction was provided to encourage the students to structure

www.manaraa.com

20

the description in way that avoids writing just a stream of facts. This assignment was submitted

after spring break, so the students had instruction in visual communications and practice using

the Scrum and Scrumban versions of an Agile software process model on the two capstone

assignments in the course. We also provided another example of a features matrix in the

assignment, and students had instructor feedback from the first assignment.

Overall, student performance on Homework 3.8 was much better than on Homework 1.4. To

compare the differences in the features matrices created at the beginning of the semester with the

features matrices created at the end of the semester, consider the examples of student work in

Appendix B between Homework 1.4 and Homework 3.8. In the first example, Student A

includes more descriptive feature labels and more descriptive cell entries in the features matrix in

the second assignment. This was true of most students’ second submission. In Student B’s

second features matrix, the terminology and features chosen for the matrix are more specific and

are relevant to a comparison of the three models, whereas the labels used in the first matrix are

ambiguous and difficult to use in assessing if the student understands the process models and

their differences and similarities. The results of this assignment reinforced our observations from

Homework 1.4. We also believe that giving the students “good” examples to use as a model,

along with a rubric by which they can evaluate their work would be helpful (unfortunately the

ACE 2 rubric is too generic).

To assess the students’ ability to create a more complex visualization, we assigned a take-home

midterm that asked the students to create an on-boarding process for an open-source project and

to visually represent their process. We also asked the students to justify why their proposed

process would benefit new developers, citing their experiences and lessons learned. Students

gained on-boarding experience in the capstone project assignments, so they had first-hand

knowledge of how to onboard (join) a new project. We also assessed their ability to apply the

visualization process we taught in class. This process leverages established visualization design

practices to guide the creation of a visualization. Four out of 18 students received full credit for

process execution. Students who did not receive full credit lost points for failing to document

steps in the process. Many students lost points in the category of visualization content for failing

to include all of the process components specified in the assignment. Students also lost points for

professional writing in their justification, and for failing to argue concretely for their proposed

process. With respect to visualization quality (e.g., effective use of hierarchy, grouping,

sequence, position, color, size, shape, orientation, appropriate level of abstraction, creativity and

professional writing), most students scored 7 or 8 out of 10 points; all but one student received

both points for creativity. The student who lost points for creativity turned in a visualization that

appeared to lack any real effort to create an image of the process. Appendix C includes examples

of visualizations illustrating “A”, “B” and “C” level work (based on the visualization scores

only). The visualization receiving a grade of “C” failed to cover all of the required content and

lost points for quality related to effective use of hierarchy and size, and for professional writing

(improper capitalization). The visualization receiving a grade of “B” received full credit for

visualization quality but lost points for failing to cover all of the required content. The

visualization receiving a grade of “A” received full credit for content and visualization quality.

We were surprised that students lost points for failing to apply the visualization process and for

failing to include all of the required components in the onboarding process. We attribute some of

these issues to students rushing through the assignment. Given the amount of instruction

www.manaraa.com

21

provided and the limited number of formative assessments, we believe the students adequately

accomplished this learning objective. However, for future offerings of this course, we plan to

explore instructional techniques for better teaching visual communications and to provide more

formative assessment opportunities for students to practice using the process. We will also

assign these progressively more challenging visualizations earlier in the semester.

Learning Objective 2

We assess the second learning objective in SOFT 261 by first several informal peer reviews

during class that are observed by the instructors, but not graded. We assess their ability to

perform formal reviews on an individual basis as part of the capstone assignments and on the

final exam.

Informal Reviews. In previous software engineering courses, students review their peers’ designs,

code, and contributions to course projects. In SOFT 261, we built on this experience by asking

students to work in teams to perform informal peer reviews of visualizations and presentations

created by other teams. The results of these reviews are used to help the teams prepare their

capstone presentations. To help students prepare to solicit feedback, they first complete an

exercise that guides them through a process to identify feedback that would be useful and that

helps them develop questions they can ask to assess the reviewers’ understanding of the artifact

under review. The first steps in the process are to have the students identify the stakeholders for

the artifact under review (e.g., diagram), and then to create use cases from the perspective of that

stakeholder. The students then create one or more scenarios for each use case and then use the

scenarios to formulate questions that could be used to determine if the artifact supports the

scenario.

The peer review process is performed in two rounds during a class session and facilitated using

the questions developed in the previous exercise and a peer review worksheet provided by the

instructors. Instructors pair the teams. The members of each team divide into presenters and

reviewers. After completing the first round of and recording the feedback, students switch roles

and perform another round of reviews so that every team member has an opportunity to be both a

presenter and a reviewer. Informal peer reviews not only enable the students to practice giving

constructive criticism, but they also allow students to practice communication skills by

articulating their feedback verbally reviews (reviews are highly interactive between presenters

and reviewers) and in writing, and they provide the students with an opportunity to practice

receiving feedback gracefully. During the activity, the instructors observe the peer reviews, and

afterwards briefly review the written feedback provided by the students. Our observation during

these activities was that students seemed to find the feedback useful. However, when we

assessed the students’ ability to perform a formal review of a presentation or a visualization

individually, as discussed below, we found the feedback was often not specific or actionable. In

future course offerings, we plan to instruct students on how to provide specific and actionable

feedback prior to the informal reviews and to update our informal peer review worksheet to

determine the extent to which the feedback they have written is actionable and specific.

Formal Reviews. In order to assess the students’ ability to provide formal peer feedback, we

created a set of rubrics for the students to assess an oral presentation and the visualizations in

www.manaraa.com

22

these presentations. Following a presentation, the students had 5-8 minutes to write their

assessments. The rubrics were published on the course website ahead of time. We also reviewed

the rubrics together as a class. The students used the rubrics on three graded assignments, each of

which is an individual assignment (no collaboration is permitted). In the first capstone

assignment, 12% of the grade is based on the students’ ability to assess and provide constructive

feedback on their own and on other students’ in-class project presentations using the rubrics.

When grading the first capstone assignment feedback, we noticed that students frequently failed

to give specific and actionable feedback. We subsequently provided JiTT instruction to teach the

students how to provide feedback using the rubrics. We also provided examples of “good”

feedback, so that in the second capstone assignment, students had instructor feedback from the

first assignment along with the JiTT instruction to prepare them for the second round of

presentations and for the final exam. We also learned from discussions with the students after the

first capstone assignment that the rubrics were too long and too complicated to use effectively

during a presentation (i.e., it was difficult to follow a presentation and observe all of the items in

the rubric; it was also difficult in the 5-8 minutes to process and write the assessment). To

address these issues, we tried to reduce the number of rubrics used by the students in their second

capstone assignment and in the final exam. We were able to eliminate and consolidate the

rubrics, going from ten to six. Unfortunately, the number increased to nine to account for new

rubrics related to presentation delivery (e.g., blocking and gestures) in the second capstone

assignment. The student rubrics are shown in Appendix D. A more extensive set of rubrics was

used by the instructors to assess student performance. These rubrics are shown in Appendix E.

In the second capstone assignment, 6% of the students’ grade is based on their ability to use the

updated rubrics to assess their peers’ (and their own) presentations and visualizations. In the take

home final, 48% of the final exam grade is based on the students’ ability to assess two oral

presentations by students in the year-long capstone course, including the visualizations contained

in those presentations, using the rubrics provided. On the final exam, the instructions also specify

the feedback should account for significance (i.e., the comment addresses at least one aspect of

the talk that affects the audience’s ability to understand a main takeaway), and justify the

feedback’s significance (i.e., the comment explains why the audience’s ability to understand a

main takeaway is affected), both of which were necessary in order to receive full credit for the

feedback.

We have not yet had a chance to fully analyze the effectiveness of our teaching methods or

assessments related to this objective. Based on our observations during the in-class activities,

students were able to provide useful feedback to their peers; we presume it was specific and

actionable—at least to some degree. However, when the assignments required the students to

provide formal feedback using the rubrics, students tended to simply repeat the words in the

rubrics, rather than provide specific details about the presentation or visualization. For instance,

one student recorded feedback regarding visualization usage in the first capstone presentation,

“All diagrams present and explained” rather than describing how the explanations enhanced the

presentation. Another student commented on the slide format “Sometimes I felt as if there was

too much on the slides—both diagrams were a bit overwhelming” rather than provide actionable

feedback or feedback on particular slides that exhibited problems. After grading the final exam,

it appears that at least some of the students were better able to use the updated rubrics provided

by the instructors to write specific, actionable feedback (both positive and negative) at the end of

www.manaraa.com

23

the semester. For instance, one student provided the following feedback on visualization quality

“The visualizations are decent overall, however, the flowchart failed to convey hierarchy,

grouping, and sequence. At first glance, I didn’t know where to start looking…To achieve this

they could make a clear starting place and have shown grouping and/or hierarchy.” And another

student provided feedback on the level of detail and use of terminology with the following

comment, “The presenters did a good job of explaining terms that were necessary for the

understanding of the project. Terms like pull were explained at a level that was acceptable to the

audience. In the future, including a visualization of the pull process would reduce the amount of

time explaining the term.” Both of these comments have more of the attributes of the feedback

we expected.

Although the SOFT 261 students seem able to provide informal feedback during guided

exercises, they struggle with providing formal feedback. They did a good job of providing both

positive and negative feedback, and in providing constructive feedback, but they struggle with

providing specific, actionable and significant feedback. They also struggle to justify how the

suggested changes can help improve the artifact. In future course offerings, we plan to provide

instruction for writing good (specific, actionable, significant) feedback, explain how the

investment in writing good feedback can pay off for both the reviewers and the presenters, and

illustrate how good feedback is specified. We also need to consider giving the students more time

to process the presentation and to write their feedback (and to make sure it exhibits all of the

criterial we have specified).

Learning Objective 3

Assessing the third learning objective in SOFT 261 is more challenging. Through the capstone

project assignment students applied disciplined software engineering principles and practices by

completing a software construction project (Phase I of the capstone assignment) and a software

maintenance project (Phase II of the capstone assignment). Both assignments were performed in

teams of three to four students using real-world software. The extent to which students met this

learning objective can be assessed based on our observations of the student sduring lab and

during class, and based on their project status and plans recorded in the project management tool

and their messages in Slack. During the weekly labs, students demonstrated their application of

the Agile process to the teaching assistants through the various lab activities. Most students

attended all of the lab sessions (attendance is required) and completed all of the checkpoints.

Students also performed weekly stand-up meetings in class for the instructors to observe.

Teaching assistants and instructors also monitored students’ Slack channels, team repositories,

and project management artifacts to assess the students’ use of Agile practices. Based on these

observations, the students appeared to meet course objective 3.

We can also measure student learning through the students’ capstone assignment grades. On the

first assignment student scores ranged from 72% to 88%. Student teams performed well building

a module using the OpenMRS framework, applying the Agile process methodology, and on

demonstrating visual communication techniques. All but one team earned all six points on the

application of Agile processes (the other team earned five points). Three of the five teams earned

full credit for demonstrating visual communication techniques; the other two teams scored a five

out of six. Where the students did not do well was on software engineering practices related to

www.manaraa.com

24

testing, documentation, and practices to support software maintainability—all of the practices

they had learned and used in previous core course projects. Surprisingly, most teams lost the

majority of their assignment points in this part of the assignment. The highest number of points

earned in this category was three out of six points (the overall assignment was worth 33 points).

Two out of five teams earned three points, two teams earned two points, and one team earned

only one point for software engineering practices. We believe that the students’ poor

performance on software engineering practices was at least partially due to being overwhelmed

with the independent learning and the less structured assignments in the course, and that they

treated these tasks as lower priority when they fell behind on the assignment.

On the second capstone assignments, student scores ranged from 85% to 98%. Table 1, shown

below, shows the number of points earned by each team in each category for the team

component of the assignment (10 additional points were awarded based on the individual’s

performance). Most teams lost a point in the application of Agile processes for not writing user

stories from the perspective of the user. User stories were a difficult concept for students to learn

and we learned that we need to provide more instruction on how to identify and specify user

stories. Most teams effectively demonstrated visual communication skills in their capstone

presentation. Students lost points for a variety of reasons, including failing to include a required

visualization and professional writing in the presentation slides.

 Possible

Points

Team A Team B Team C Team D Team E

Contributions to OpenMRS 24 22 24 24 24 24

Professional Communication Practices 8 8 8 8 8 8

Application of Agile Process

methodology and tools

8 7 7 7 7 7

Demonstration of Visual

Communication Techniques

15 11.5 13 12.5 14.5 12.5

Total Team Score 55 48.5 52 51.5 53.5 51.5

Table 1. SOFT 261 Capstone Phase II Team Scores

Finally, student success with respect to this objective can also be assessed by the number of

OpenMRS talk threads the students participated in (19), the number of JIRA tickets the students

commented on or worked on (21), and the number of pull requests each team worked on (21).

These numbers, though raw with no baseline for comparison, show that the student teams were

actively (and successfully) working on the OpenMRS project and interacting with the project

developers. For future course offerings, we plan to explore ways to better assess student

achievement of this outcome, including ways to leverage the data collected during the inaugural

course offering to compare with future course offerings.

Analysis of Student Perceptions

Software engineering students progress through the program as a cohort, and they have thus far

had the same set of instructors for the core courses. This consistency in the student population

and their shared academic history have enabled us to develop a course that builds on the themes

set in the previous courses and to also leverage our knowledge of the students’ backgrounds and

capabilities. It has also presented an unexpected challenge in that students expect the course to be

www.manaraa.com

25

very similar to the previous core courses in structure and teaching methodologies. When we

made structural changes to SOFT 261 (e.g., removed some of the supporting framework

provided in the previous three core courses and incorporated more independent learning

activities), the students expressed concern and frustration at the beginning of the semester.

Despite these changes, however, students became more confident in their ability to work without

all of the scaffolding as the semester progressed. One student even commented “While the

project was intimidating at first, it ended up being very helpful.”

To analyze students’ perceived learning and attitudes towards the course, we developed a brief

survey that was administered in the 3rd, 8th, and 16th weeks of class. The survey statements are

shown below in Table 2. The survey also included space for comments. The survey was

administered on paper during class. Surveys were collected by a student in the course and placed

in an envelope that was delivered to the instructor at the end of class. Based on the number of

responses, participation on all three surveys was 100%.

Statement 1 2 3 4 5

1 The amount of course work is reasonable.

2 The homework and journal assignments help me understand and apply the

subject matter.

3 The lab assignments help me understand and apply the subject matter.

4 The in-class research activities help me understand and apply the subject

matter.

5 The in-class peer instruction activities help me understand and apply the

subject matter.

6 The course project helps me understand and apply the subject matter.

7 The format of the labs provides enough guidance to complete the lab.

8 Communication skills are an important topic for software engineering students

to study.

9 I prefer to study communication skills in a software engineering course.

10 I feel more confident producing and delivering visual communications related

to software architecture, implementation, planning and tracking.

11 I feel more confident formulating constructive feedback on visual

communications.

12 I feel more confident working in a team to communicate technical

information.

Table 2. SOFT 261 Student Survey Questions

Figure 1, shown below, displays the aggregated data across the three surveys. For each survey

statement shown on the x-axis (S1—S12), the mean of the students’ scores is shown on the y-

axis. The scores are based on a Likert scale of 1 to 5 where a score of 1 indicates the student

“strongly disagrees” with the survey statement and a score of 5 indicates the student “strongly

agrees” with the survey statement. With the exception of S2 (“The homework and journal

assignments help me understand and apply the subject matter.”), student agreement with the

Strongly Disagree (1) Strongly Agree (5)

www.manaraa.com

26

survey statements increased over the semester. Based on comments provided in the survey

responses, we believe the reason for the drop in agreement with S2 is that students did not

perceive value in the journal assignments. For instance, one student commented “I liked doing

journal assignments in the earlier software engineering courses but now they are starting to feel

like a waste of time especially with other classes having large projects...,” and another student

stated “The homework is helpful but the midterm took too much time … Journals feel

unnecessary and just add to the stress.” We also found that many students did not complete the

journal assignments despite the fact that the journal grades account for 5% of the students’ final

grade and were graded only for effort and professional writing (versus correctness).

Figure 1. SOFT 261 Student Survey Results

Although we believe that the differences between SOFT 261 and the previous core courses in

terms of infrastructure and independent learning will continue to be an issue in future course

offerings, we plan to mitigate some of the discomfort for students by explaining the reasons for

the changes at the beginning of the semester, and by scaling back on some of the independent

learning activities until later in the semester.

Summary of Planned Changes

While we were overall very satisfied with the course as it was taught during its in inaugural

offering, we plan to continue to evolve the course to improve student learning and to improve the

scalability of the course (since we anticipate having twice as many students in the course when it

is offered again next year).

0.00

1.00

2.00

3.00

4.00

5.00

6.00

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

SOFT 261 Spring 2018
Student Survey

Mean Week 3 Mean Week 8 Mean Week 16

www.manaraa.com

27

The first set of changes is related to providing additional course materials. We noticed that

students can achieve some level of self-learning during the fourth semester, but it is more limited

than we expected. Also, we noticed that many students do not take notes during class. We are not

sure if they believe what we are teaching is common knowledge or if they were expecting the

course text book we developed for the other core software engineering courses to be updated and

available for reference. Given the unique combination of topics presented in this course and the

areas we observed students struggling, we plan to develop course materials covering the

following topics for the a course:

• Software process models

• Specifying requirements (e.g., user stories)

• Task estimation and planning

• Risk identification, assessment and mitigation

• How to create a visual communication

• How to write an agenda

• Learning software architecture (e.g., MVC)

• Software development workflow (e.g., Jira and Github)

• How to find open tasks in an open source project (e.g., OpenMRS)

• How to give specific, actionable constructive feedback

The course materials will continue to include in-class worksheets similar to the worksheets

designed for the inaugural offering of the course. These worksheets will be used to give students

hands-on practice working in their teams during class and then assigned as homework if not

completed in class. We will also convert our lecture notes into an on-line text book that covers

the instructional material delivered in class. The course material will also include model

examples of “good” and “weak” artifacts (e.g., user stories, peer feedback).

Designing a course that teaches visual communications in the context of software engineering

was a challenging endeavor. Not only did we not have experience teaching this novel

combination of topics, but we also were unsure how to assess student learning. We were also in

a situation of deploying the fourth new course in four semesters, and as a result, entered the

semester with limited preparation. While we believe our assessments were adequate, we also

believe they require significant improvements. The second major change planned for the next

instantiation of SOFT 261 is a redesign of the course assessments. Our preliminary list of ideas

includes:

• Provide more formative assessments earlier in the semester. For instance, the take home

midterm came after spring break. The feedback on the midterm was then almost too late

to help the students with the take home final,

• Ensure that the journal assignments are integrated with the rest of the course,

• Decide if quizzes over concepts are necessary, and if so, develop a set of quizzes that can

be easily graded as the cohort size grows,

• Create assessments that can be graded in a timely manner as the cohort size grows, and

• Assess student peer feedback earlier in the semester.

www.manaraa.com

28

Although we expect these planned changes to have a positive impact on student learning, there

are other aspects of the course that we do not yet know how to change in order to improve

student learning and performance. In particular,

• How to motivate students to use the assignment grading breakdown as a checklist to

make sure they are submitting a complete assignment. The assignments have multiple

steps and components. For each part of an assignment, we list the number of points that

are possible; however, students often turn in incomplete work.

• How to motivate students to use professional writing in all of their submissions (e.g.,

correct punctuation, spelling, grammar, etc.).

• How to explain the value and importance of reflective assignments.

Summary and Overall Assessment of the PRT Portfolio Process

Preparing a benchmark portfolio was beneficial in several ways. First, the PRT portfolio process

provides structure and guidance in how to design (or re-design) a course. It also provides a

community of faculty from across UNL whom I can learn from and with whom I can share my

teaching experiences. After working through this process and maintaining a course reflections

journal while teaching this course, I am much better prepared to create a course and I am much

more confident in the effectiveness of a course developed using this process. Furthermore, I am

confident in what I have learned to the extent that I can share my experiences with other faculty

members, and have already begun to do so with a new faculty member in our department.

Through the development of this portfolio I learned how to avoid the trap of letting a textbook

table of contents drive the organization of a course. Instead, I begin by writing a reasonable

number of measurable course objectives, and then develop course activities and materials to

support those objectives, and design assessments to measure student learning of the course

objectives. While this is a seemly simple process, there are many challenges, and much more

intellectual effort is required. Writing the final course portfolio paper was also a useful exercise

in assessing the effectiveness of the teaching methods, course materials, outside activities and

assessments. After reviewing each component, I was able to identify a set of changes that I

believe will improve the course and that I can assess next time the course is offered.

The resulting portfolio has the potential to be a valuable resource to those who review my

professional development, to those who are interested in developing a course that teaches

communication skills in the context of software engineering, and to future instructors of the

course.

www.manaraa.com

29

Appendix A

Course Syllabus & Schedule

SOFT 261 Syllabus

Spring 2018

Prerequisites

• A grade of C+ or higher in SOFT 260.

Meeting Times

• Classes: 11:00-12:15 TR

• Labs: 8:30-10:20 F

Instructor(s)

• Suzette Person — 362 Avery Hall (sperson@cse.unl.edu)

o Office Hours: By appointment

• Brady Garvin — 356 Avery Hall (bgarvin@cse.unl.edu)

o Office Hours: By appointment

Teaching Assistants

• Sara El Alaoui (GTA) — 12 Avery Hall (ea.sara@ymail.com)

o Office Hours: Posted on Piazza

• Jim Drake (UTA) — 12 Avery Hall (jimdrake55x@gmail.com)

o Office Hours: Posted on Piazza

Textbook

• No assigned textbook

Course Description

From the official course description:

Techniques and tools based on disciplined software engineering principles for producing, interpreting,

and communicating visual artifacts related to software architecture and construction; techniques for

communicating with technical and non-technical audiences. Techniques for managing software projects,

communicating and collaborating effectively in teams, and visualizing software process models.

Course Objectives

After completing this course, students should be able to:

1. Produce and deliver visual communications related to software architecture, software

implementation, and software planning and tracking to technical and non-technical audiences.

2. Formulate and communicate constructive feedback on visualizations and content in peer technical

communications.

3. Work effectively in teams to achieve project and team goals, communicate technical information

and to resolve conflicts.

mailto:bgarvin@cse.unl.edu
mailto:ea.sara@ymail.com
mailto:jimdrake55x@gmail.com

www.manaraa.com

30

Course Topics and Tentative Schedule

A detailed course schedule is available on the course website.

Communication

Communication and announcements from the instructor(s) will be via the course

Piazza page at <https://piazza.com/unl/Spring2018/soft261> or in rare cases via

email. It is CSE Department policy that all students in CSE courses are expected to regularly check their

email so they do not miss important announcements.

The primary medium for contacting the instructor(s) or TA(s) is the course Piazza

page. Questions about course content or questions that are of general interest to other students should be

posted there.

The instructor(s) and teaching assistant(s) also have regular office hours. They may also be available by

appointment (as their schedules permit); please schedule an appointment via email if your question is

urgent or you cannot attend regular office hours.

Additionally, the CSE Student Resource Center (SRC) in Avery 12 is staffed by student tutors who are

available to help you with this course or with issues such as problems logging in to CSE systems,

problems printing, printing installing an application, etc. The SRC also provides a study space that is

open to all software engineering majors. The SRC website is here.

The Department of Computer Science and Engineering also maintains an anonymous suggestion box that

you may use to voice your concerns about any problems in the course or department if you do not wish to

be identified.

Grading

Final grades will be based on:

Class participation 5%

In-class activities and project 40%

Final presentation and paper 15%

Quizzes 10%

Mid-term exam 10%

Homework assignments 15%

Journal assignments 5%

Letter grades will be assigned according to the following rubric:

* A: 93–100, A-: 90–92

* B+: 87–89, B: 83–86, B-: 80–82

* C+: 77–79, C: 73–76, C-: 70–72

* D+: 67–69, D: 63–66, D-: 60–62

* F: 0–59

http://cse.unl.edu/~soft261
http://cse.unl.edu/src
http://cse.unl.edu/contact-form

www.manaraa.com

31

The instructor(s) will make every effort to grade and return submitted material within one academic week

after the due date. If you have questions about your grade or believe that points were deducted unfairly,

you must address the issue with one of the instructor(s) within one week after the graded assignment is

returned to you. We will make every attempt to assign grades consistently on each assignment; we can do

this only if we grade everyone's work at the same

time.

As an ACE 2 course, the instructors will evaluate students' visual communication assignments using the

ACE 2D rubric.

SOFT 261 Journals

Reflection and writing are key elements of learning. Your homework assignments in SOFT 261 include a

series of journal assignments. These exercises are intended to (1) help you prepare for upcoming in-class

assignments, (2) provide opportunities for you to reflect on your learning and experiences in the course,

(3) provide opportunities for you to practice and improve your written communication skills, and, (4) to

be another way for you to communicate with us (the instructor[s]). We will also use your journal entries

to identify common misconceptions, and topics that may warrant more (or less) discussion in the future.

Each week, a subset of journals will be selected at random for review and grading. Journal entries will be

scored for effort (0 points or 1 point) and professional writing (0 points or 1 point). They are not scored

based on the correctness of the response; rather, they serve as a way for students to practice asking

questions when they are unsure of an answer. The instructor(s) will do their best to respond to questions

asked in the journals that are graded.

Exams and Homework

In general, there will be no make-up exams. Exceptions may be made in emergency situations.

Documentation may be required.

ACE Compliance

This course fulfills the three credit hours of ACE Student Learning Outcome #2:

Demonstrate competence in communication skills in one or more of the following ways:

a. by making oral presentations with supporting materials,

b. by leading and participating in problem-solving teams,

c. by employing communication skills for developing and maintaining professional and personal

relationships, and

d. by producing and/or interpreting visual information.

This course is primarily focused on ACE SLO #2d.

SOFT 261H introduces tools and techniques based on disciplined software engineering principles for

producing, interpreting, and communicating visual artifacts related to software architecture and

construction. This course covers techniques for effective communication of software architecture design,

software complexity, software process models, and software plans and status to diverse

audiences. This course offers numerous learning opportunities via interactive lectures, hands-on class

activities, lab work, homework assignments, a course capstone project, and guest speakers. Students

receive extensive hands-on opportunities to produce, interpret, critique, and refine visualizations for

https://ace.unl.edu/ACE%202%20Rubric%20Revised%204-27-16.pdf

www.manaraa.com

32

technical and non-technical audiences. Peer-to-peer reviews of visualizations for adherence to visual

communication principles, legibility, understandability, correctness, completeness, inconsistencies, etc.

allow students to practice and learn from real-world review processes in addition to receiving instructor

feedback and grade.

Traditional exams and quizzes will be utilized to assess content knowledge acquisition. The student’s

ability to effectively produce, interpret, critique, and refine visualizations for technical and non-technical

audiences will be assessed using individual and team assignments and presentations. To demonstrate and

practice the entire semester’s content, students will complete a capstone project to assess their grasp of

the concepts and their ability to effectively apply the tools and techniques. Students’ visualizations will be

assessed by the degree to which they articulate the features of the architecture design, complexity of the

software, and program plans, and status documentation. Students will also be assessed on their ability to

interpret and critique visualizations using criteria such as correctness, completeness, inconsistencies, etc.

and their ability to effectively communicate constructive feedback for improving visualizations to better

communicate the concepts and ideas contained therein. Student work will also be evaluated and assessed

using the ACE 2d rubric.

Computer Policy

The computer policy for this course is the same as the computer policy for the software engineering

major, which is posted here.

Technology Policy

Research has shown that digital distractions can have a negative impact on your grade and can be

distracting to those seated near you. For these reasons, the use of cell phones, including texting, posting

to social media, etc. is not permitted during class time under any circumstances. Leave your cell phone in

your backpack during class time.

You are expected to bring your laptop to class every day. Ensure your battery is sufficiently charged in

the event there is not an accessible power supply where you are sitting. Laptops may be used during class

time for the purpose of taking notes and for in-class assignments only.

Collaboration Policy

In practice, software engineers work as part of a team. Therefore, in this course we will require you to

work together to understand course concepts and assignments, and to practice working in teams.

However, outside of your assigned groups, you may not develop joint solutions, share work, or copy

anything. You are also responsible for safeguarding your own work. All external contributions must be

acknowledged, including help from others or from non-course materials such as websites. If in doubt,

ask.

Dead Week Policy

In compliance with UNL's 15th Week Policy (see the main Registration and Records webpage), be aware

that the final assignment (project paper) will be due during the final week of classes. Further, there will be

in-class assignments and presentations during the final week of class. Note also that all assignments,

homework, labs, etc., will have a strict final due date during the final week of classes.

Academic Integrity

https://ace.unl.edu/ACE%202%20Rubric%20Revised%204-27-16.pdf
http://cse.unl.edu/software-engineering-computer-policy
http://www.unl.edu/regrec

www.manaraa.com

33

The Computer Science and Engineering department has an [Academic Integrity Policy, which all students

enrolled in any software engineering course are bound by. You are expected to read, understand, and

follow this policy. Violations will be dealt with on a case-by-case basis and may result in a failing

assignment or a failing grade for the course itself.

Sources for Help and Assistance

You are ultimately responsible for your success in this course. If you have questions on material covered

or assigned in class, it is up to you to seek out assistance from the course instructor(s) or TA(s). Staff in

the CSE Student Resource Center may also be able to assist you with general questions. The CSE

Department also maintains a Frequently Asked Questions page.

Accommodations

Students with disabilities are encouraged to contact an instructor for a confidential discussion of their

individual needs for academic accommodation. This includes students with mental health disabilities like

depression and anxiety. It is the policy of the University of Nebraska-Lincoln to provide individualized

accommodations to students with documented disabilities that may affect their ability to fully participate

in course activities or to meet course requirements. To receive accommodation services, students must be

registered with the Services for Students with Disabilities (SSD) office, 232 Canfield Administration,

472-3787.

Course Schedule

Module I: Course Introduction

Session Learning Goals Assignments

1.1 1. Locate course objectives, roadmap, and resources.

2. Describe the components of effective communication.

3. Describe at least three challenges specific to

communication in software engineering.

- Read AI policy & course syllabus.

- Sign-up on course Piazza site

- Complete journal assignment

- Set-up Git homework repo

- Listen to Talking to Stakeholders:

13 Communication Anti-patterns

that Block Good Ideas

1.2 1. Describe communication anti-patterns that hinder

effective communication.

2. Describe how communication is more than just

sending and receiving a message.

3. Apply the main elements of visual communication.

4. Provide feedback on visual aspects of communication.

- Read Elements of Visual

Communication

1.3

(Lab)

1. Identify, plan and assign tasks necessary to ramp up

on a new software development project.

2. Coordinate research among team members to learn the

tools and technologies needed to support work on a

new software engineering project.

3. Setup a team communication tool.

1.4 1. Coordinate research among team members to learn the

basics of a software process model.

2. Identify the history, strengths, weaknesses, and

application of the waterfall, "V", spiral, prototyping,

and agile software process models.

3. Summarize and present the keys ideas of a software

process model at the whiteboard.

- Individual Homework 1.4

- Read Sec. I-IV(A) in What Makes

a Great Software Engineer?

- Complete journal assignment

1.5 1. Prepare a proposal for a software project. - Read Agile Software Development

http://cse.unl.edu/academic-integrity-policy
http://cse.unl.edu/current-undergraduate#SRC
http://cse.unl.edu/faq
http://www.uxaustralia.com.au/conferences/uxaustralia-2015/presentation/communication-anti-patterns/
http://www.uxaustralia.com.au/conferences/uxaustralia-2015/presentation/communication-anti-patterns/
http://www.uxaustralia.com.au/conferences/uxaustralia-2015/presentation/communication-anti-patterns/
http://sites.ieee.org/pcs/elements-of-visual-communication/
http://sites.ieee.org/pcs/elements-of-visual-communication/
https://faculty.washington.edu/ajko/papers/Li2015GreatEngineers.pdf
https://faculty.washington.edu/ajko/papers/Li2015GreatEngineers.pdf
https://en.wikipedia.org/wiki/Agile_software_development

www.manaraa.com

34

2. Describe the major flavors of agile software

processes.

3. Use agile terminology appropriately.

4. Write and derive user stories and tasks.

(Sec. 1—5)

- Read Scrum

1.6

(Lab)

1. Set up GitHub and Taiga to support team

development of an OpenMRS module.

2. Prepare a proposal for a software project.

3. Populate a product backlog with epic(s) and stories.

4. Plan a sprint, populating the sprint backlog from the

product backlog.

- Capstone Phase I assigned

Module 2: Capstone Phase I--Software Construction Project

1/23 1. Explain how the agile methodology helps us manage

problem complexity but not solution complexity.

2. Explain how a good software architecture can help

mitigate the effects of software change.

3. Describe the breadth of change drivers that a software

architecture should take into account.

- Complete journal assignment

1/25 1. Explain the motivations for spending time estimating

project tasks.

2. Use planner poker to estimate sprint tasks.

3. Use Taiga to record estimates and assign tasks.

- Read Planning Poker

1/26

(Lab)

1. Plan a sprint, populating the sprint backlog from the

product backlog.

2. Estimate and assign tasks in the sprint backlog.

3. Record your project and sprint plans in Taiga.

1/30 1. Assess the quality of a user story.

2. Communicate status, plans and risks in a daily

standup meeting.

3. Communicate bad news in a professional manner.

- Complete journal assignment

- Read Section IV(B) in What Makes

a Great Software Engineer?

2/1 1. Relate the process for visualizing communication to

the process of developing software.

2. Apply the process shown in class to a small scenario,

transforming the ideas in the scenario into a

visualization.

2/2

(Lab)

1. Demo a working version of your OpenMRS module

for the TAs.

2. Write high-quality user stories, incorporating

feedback from the instructors and TAs.

3. Plan a sprint, populating the sprint backlog from the

product backlog.

4. Record your project and sprint plans in Taiga.

Quiz 2.6

2/6 1. Identify the motivations for documenting software

architecture.

2. Identify the main elements in a software architecture

diagram.

3. Apply the process for creating visualizations shown in

class to begin documenting the architecture of your

team's OpenMRS module.

- Complete journal assignment

- Read INVEST in Good Stories and

SMART Tasks

- Read INVEST in User Stories

2/8 1. Trace the mapping of an OpenMRS module to the

MVC architecture components.

2. Locate the services provided by OpenMRS.

3. Trace the code in the basic OpenMRS module.

2/9

(Lab)

1. Demo a working version of your OpenMRS module

for the TAs.

2. Write high-quality user stories, incorporating

Quiz 2.9

https://en.wikipedia.org/wiki/Scrum_(software_development)
https://wingman-sw.com/articles/planning-poker
https://faculty.washington.edu/ajko/papers/Li2015GreatEngineers.pdf
https://faculty.washington.edu/ajko/papers/Li2015GreatEngineers.pdf
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://dzone.com/articles/invest-user-stories

www.manaraa.com

35

feedback from the instructors and TAs.

3. Plan a sprint, populating the sprint backlog from the

product backlog.

4. Record your project and sprint plans in Taiga.

2/13 1. Apply the process shown in class for creating a

visualization.

2. Create a visualization mapping your OpenMRS

module to the MVC architecture.

3. Formulate a set of scenarios that can help a reviewer

analyze your diagram.

- Complete journal assignment

- Read Section IV(C) in What Makes

a Great Software Engineer?

2/15 1. Apply the process shown in class for creating a

visualization.

2. Solicit useful, actionable feedback on a visualization

in the context of a review.

3. Provide useful, actionable feedback on a visualization

in the context of a review.

4. Take feedback professionally and graciously.

2/16

(Lab)

1. Demo a working version of your OpenMRS module

for the TAs.

2. Write high-quality user stories, incorporating

feedback from the instructors and TAs.

3. Plan a sprint, populating the sprint backlog from the

product backlog.

4. Record your project and sprint plans in Taiga.

Quiz 2.12

2/20 1. Design a project handoff presentation.

2. Develop a clear, concise presentation that incorporates

appropriate visualizations to describe your OpenMRS

module.

3. Plan the presentation delivery in a way that balances

the participation among team members.

- Complete journal assignment

- Read Section IV(D) in What

Makes a Great Software Engineer?

- Read Storytelling-The Missing Art

in Engineering Presentations

2/22 1. Apply the process shown in class for creating a

project handoff presentation.

2. Solicit useful, actionable feedback on a presentation

in the context of a review.

3. Provide useful, actionable feedback on a presentation

in the context of a review.

4. Take feedback professionally and graciously.

2/23

(Lab)

1. Close out a project in Taiga.

2. Perform a project retrospective.

3. Create a module-evolution retrospective diagram.

- Capstone Phase I due today

2/27 1. Work as a team to deliver a project handoff

presentation.

2. Use visualizations in a presentation to communication

software architecture and software evolution.

3. Provide a constructive qualitative assessment of a

project handoff presentation.

- Complete journal assignment

- Complete 360 review

3/1 1. Work as a team to deliver a project handoff

presentation.

2. Use visualizations in a presentation to communication

software architecture and software evolution.

3. Provide a constructive qualitative assessment of a

project handoff presentation.

4. Setup a Scrumban project in Taiga.

Module 3: Capstone Phase II--Software Maintenance Project

3/2 1. Set up Taiga and Slack to support team maintenance - Capstone Phase II assigned

https://faculty.washington.edu/ajko/papers/Li2015GreatEngineers.pdf
https://faculty.washington.edu/ajko/papers/Li2015GreatEngineers.pdf
https://faculty.washington.edu/ajko/papers/Li2015GreatEngineers.pdf
https://faculty.washington.edu/ajko/papers/Li2015GreatEngineers.pdf
http://www.cse.iitm.ac.in/~kalyantv/pdf/storytelling.pdf
http://www.cse.iitm.ac.in/~kalyantv/pdf/storytelling.pdf

www.manaraa.com

36

(Lab) of OpenMRS code.

2. Identify subprojects within a large codebase that your

team can contribute to.

3. Identify reasonably scoped and useful maintenance

tasks to begin working on.

3/6 1. Work as a team to perform maintenance tasks on

OpenMRS.

2. Communicate status, plans and risks in a daily

standup meeting.

- Complete journal assignment

3/8 1. Research and ramp-up on a software development

process.

2. Create a pull request.

3. Work as a team to perform maintenance tasks on

OpenMRS.

3/9 1. Assess and record project progress,

2. Demo a working version of your OpenMRS

contributions (if your team is at the end of a sprint),

3. Make course corrections as necessary,

4. Perform software maintenance on unfamiliar code,

and

5. Communicate project status to someone outside your

team.

3/13 1. Create appropriate visualizations in technical

documentation or create appropriate visualizations to

represent documentation changes.

2. Create appropriate visualizations to represent the

impact of testing changes.

3. Create appropriate visualizations to represent code

changes related to a bug fix or feature enhancement.

3/15 1. Plan a status meeting.

2. Prepare a meeting agenda.

3. Draft an email message to send with the agenda.

4. Create a slide template that can be used for status

meetings.

- Homework 3.6 assigned

3/16

(Lab)

1. Assess and record project progress,

2. Demo a working version of your OpenMRS

contributions (if your team is at the end of a sprint),

3. Make course corrections as necessary,

4. Perform software maintenance on unfamiliar code,

and

5. Communicate project status to someone outside your

team.

3/20 SPRING BREAK

3/22 SPRING BREAK

3/23 SPRING BREAK

3/27 1. Explain why drawing is not art.

2. Explain why drawing is a useful communication

practice for software engineers.

3. Describe the basic tools needed to visually

communicate in software engineering.

- Complete journal assignment

- Take home midterm assigned

- Homework 3.8 assigned

3/29 1. Lead a status meeting with the project stakeholders.

2. Take meeting minutes.

3. Perform software maintenance on unfamiliar code.

3/30

(Lab)

1. Assess project progress.

2. Make course corrections as necessary.

www.manaraa.com

37

3. Perform software maintenance on unfamiliar code.

4/3 1. Explain the challenges of testing highly configurable

software.

2. Explain how and when combinatorial interaction

testing is used in software testing.

- Complete journal assignment

4/5 1. Lead a status meeting with the project stakeholders.

2. Take meeting minutes.

3. Perform software maintenance on unfamiliar code.

4/6

(Lab)

1. Assess and record project progress.

2. Make course corrections as necessary.

3. Plan the visualizations for your final presentation.

4. Perform software maintenance on unfamiliar code.

4/10 1. Design a presentation for a release meeting.

2. Pre-plan important aspects of a presentation's

delivery, including blocking, gestures, tempo, and

team coordination.

- Complete journal assignment

4/12 1. Lead a status meeting with the project stakeholders.

2. Take meeting minutes.

3. Perform software maintenance on unfamiliar code.

- Take home midterm due today

4/13

(Lab)

1. Assess and record project progress.

2. Make course corrections as necessary.

3. Plan the visualizations for your final presentation.

4. Perform software maintenance on unfamiliar code.

4/17 1. Work as a team to prepare a release meeting

presentation.

2. Work as a team to finalize a software maintenance

project.

4/19 1. Solicit useful, actionable feedback on a presentation

in the context of a release meeting.

2. Provide useful, actionable feedback on a presentation

in the context of a release meeting.

3. Take feedback professionally and graciously.

- Homework 3.8 due today

4/20

(Lab)

1. Close out your OpenMRS maintenance project.

2. Perform a project retrospective.

3. Finalize your release meeting presentation.

4/24 1. Present your team's capstone project.

2. Provide a constructive qualitative assessment of a

release meeting presentation.

- Complete 360 review

4/26 1. Present your team's capstone project.

2. Provide a constructive qualitative assessment of a

release meeting presentation.

4/27

(Lab)

1. Critically assess and formulate specific and actionable

feedback on a formal presentation,

2. Create or improve a visualization to communicate key

information clearly, creatively, and concisely.

3. Develop and express an effective argument of how the

new or enhanced visualization would improve the

presentation.

- Take home final exam assigned

5/1 Final Exam - Take home final exam due 5:30

www.manaraa.com

38

Appendix B

Homework 4.1 versus Homework 3.8 – Features Matrix Assignment

Student A Features Matrix Homework 1.4

Student A Features Matrix Homework 3.8

 Waterfall Non-Agile Iterative Agile

Adaptable X X

Client

Focused

X X

Concrete

Steps X

Group

Oriented X X

Iterative X X

Lengthy X

Releasable in

One Cycle X X

Well

Documented X

 Scrum Scrumban Kanban

Daily Standup Meetings Yes Maybe No

Develops in Short Sprints Yes Maybe No

Each Participant Has a Distinct Role Yes Maybe No

Organized Around Small Teams Yes Yes No

Assigns Tasks To User Stories Yes Maybe No

Limits Work In Progress No Maybe Yes

Limits Ready Work No Maybe Yes

Taskboard Can Span Multiple Teams No Maybe Yes

www.manaraa.com

39

Student B Features Matrix Homework 1.4

Student B Features Matrix Homework 3.8

Waterfall Non-agile iterative Agile

Good for large projects ✓

Structured in phases ✓

Sticks to original plan ✓ ✓

Flexible ✓

Strong documentation ✓

Has stabilization phase ✓ ✓

QA can be done during implementation ✓ ✓

Product Owner determines scope ✓ ✓

Entire team responsible for work ✓

Scheduled meetings ✓ ✓ ✓

Provides a final product ✓ ✓ ✓

Feature \ Model Scrum Scrumban Kanban

Works in Iterations (Sprint, etc.) Yes Maybe No

Utilizes a Backlog for US/Tasks Yes Yes Yes

Allows for Measurable Productivity Yes Maybe No

Client Sets Priority Yes No No

Continuous Workflow No Yes Yes

Pre-defined Roles Per Team Member Yes No No

Work-in-Progress Limits No Yes Yes

On-Demand Planning No Yes Yes

Allows for Highly Variable Environment No Yes Yes

www.manaraa.com

40

Student C Directed Paraphrasing Homework 1.4

New employee,

Welcome to the team! You should settle in well since you are more than qualified for this

position. I understand that your education was mainly focused on the agile software

development, and I am writing this to assist in the understanding of how we operate. As a

software company focused on developing small projects, we initially found that using the

waterfall methodology was the ideal process model to use.

It benefits us by being able to strongly document our software before we implement it. This will

be beneficial to you as a newcomer, so you are not lost in the project we are currently focused

on. Along with that, we are able to have a clearly set phases that will aid in our software

development. Having a predetermined finished product can be good in some cases, similar to

ours.

It should not be too difficult to adapt to this model. I understand having little practice in a new

area is difficult at first, but over time it should become second nature, much like your working

with the agile methodology. We will not be testing during implementation, so you will most likely

have to revisit code should a quality assurance employee spot something. Another main

difference is the length of our development, we will not be working in sprints, but rather in

phases. This goes from project planning to implementation to testing and release.

I have been thinking of what you may introduce to our team from the agile methodology. We

might want to start testing during implementation to save company time. I am sure that you can

come up with some different methods for us to use over time should we be able to adjust

accordingly.

www.manaraa.com

41

Appendix C

Take Home Midterm – Onboarding Process Visualization

Example of “C” level work visualizing an onboarding process

www.manaraa.com

42

Example of “B” level work visualizing an onboarding process

www.manaraa.com

43

Example of “A” level work visualizing an onboarding process

TroubleshootingPreparing to ContributeInvestigating ModulesFamiliarizing with OpenMRS

1. Locate OpenMRS home page

2. Explore OpenMRS overview

3. Explore OpenMRS purpose

Explore OpenMRS

1. Familiarize with GitHub
▪ Maintains source code

2. Familiarize with OpenMRS Wiki
▪ Contains documentation

3. Familiarize with OpenMRS JIRA
▪ Tracks issues

4. Familiarize with OpenMRS Talk
▪ Offers question and answer

services

Familiarize with

OpenMRS tools

1. Examine OpenMRS architecture
diagram

2. Examine OpenMRS architecture
documentation

Examine OpenMRS

architecture

1. Locate the module’s

source code on GitHub

2. Read the

README.md file

3. Locate the module’s

wiki page

4. Browse the

documentation

Select an
OpenMRS module

1. Select a JIRA ticket

2. Inspect the ticket

3. Locate relevant code

4. Inspect the code

Locate the module’s
JIRA page

1. Find the “Developer Guide” in the
OpenMRS Wiki

2. Follow instructions in “Getting
Started as a Developer”

3. Follow instructions in “OpenMRS
SDK”

Set up a development
environment

1. Follow instructions on the
OpenMRS Wiki

Learn how to use the
development environment

1. Read “Module Conventions” under
“For Module Developers” in the
“Developer Guide”

2. Browse OpenMRS Talk

Learn OpenMRS
conventions and etiquette

1. Read the Contributing.md file in
the OpenMRS core module

Learn how to contribute to
OpenMRS

1. Browse OpenMRS

Wiki -->

Troubleshooting

2. Browse OpenMRS

Talk, particularly

“Ask OpenMRS” and

“Implementing”

categories

Learn common
errors

1. Explore OpenMRS

community Help

Desk

2. Review OpenMRS

Talk

Learn how to
obtain help

OPENMRS ONBOARDING

www.manaraa.com

44

Appendix D

Presentation Rubrics—Student Version (after first capstone assignment)

www.manaraa.com

45

 “A” level work “B” level work “C” level work “D”/”F” level work

Slide Format All slides use an

unobtrusive theme, a

readable font, and audience-

friendly colors.

Most slides use an

unobtrusive theme, a

readable font, and

audience-friendly colors.

Few slides use an

unobtrusive theme, a

readable font, and

audience-friendly colors.

No slides use an

unobtrusive theme, a

readable font, and

audience-friendly

colors.

Visualization

Quality

The visualizations are

accurate and polished, and

they effectively convey

hierarchy, grouping and/or

sequence.

The visualizations are

accurate and polished, but

do not effectively convey

hierarchy, grouping and/or

sequence.

The visualizations

contain inaccuracies or

are unpolished.

The visualizations are

inaccurate and

unpolished.

Visualization

Usage

Visualizations are helpful

and consistently well

explained.

Visualizations are helpful

and sometimes well

explained.

Visualizations are

unhelpful or not well

explained.

Visualizations are

unhelpful and not well

explained.

Demo Presentation includes a

polished demo of the team’s

contributions to OpenMRS

and the team recovers

gracefully from unexpected

difficulties.

Presentation includes a

unpolished demo of the

team’s contributions to

OpenMRS, or the team

does not recover gracefully

from unexpected

difficulties.

Presentation includes an

unpolished demo of the

team’s contributions to

OpenMRS, and the team

does not recover

gracefully from

unexpected difficulties.

Presentation does not

include a demo of the

team’s contributions to

OpenMRS.

Audience Presentation is consistently

appropriate for the audience

in terms of level of detail

and use of terminology.

Presentation is usually

appropriate for the

audience in terms of level

of detail and use of

terminology.

Presentation is sometimes

appropriate for the

audience in terms of level

of detail or use of

terminology.

Presentation is rarely

or never appropriate

for the audience in

terms of level of detail

or use of terminology.

Transitions Transitions between topics

are consistently smooth.

Transitions between topics

are mostly smooth.

Transitions between

topics are rarely smooth.

Transitions between

topics are never

smooth.

Blocking and

Gestures

Speakers move deliberately,

use effective gestures, and

point at the screen as

necessary; non-speakers

show attention to the

speaker or slides.

Speakers sometimes move

deliberately, use effective

gestures, and point at the

screen; non-speakers show

attention to the speaker or

slides.

The blocking or gestures

are distracting or absent,

or speakers fail to point at

the screen as necessary;

non-speakers show

attention to the speaker or

slides.

The team’s blocking

and gestures are

consistently distracting

or absent.

Tempo Presentation pace is

consistent, pauses are

effective, and the audience

is kept engaged.

Presentation pace is

inconsistent, or needed

pauses are missing, but the

audience is kept engaged.

The presentation rushes

or drags, and the audience

occasionally becomes

lost, bored, or

disengaged.

The pace of the

presentation

consistently leaves

the audience lost,

bored, or disengaged.

Team

Coordination

Presentation and question-

answering responsibilities

appear planned and team

members coordinate

professionally.

Presentation and question-

answering responsibilities

appear planned, and team

members sometimes

coordinate professionally.

Presentation and

question-answering

responsibilities appear

planned, but team

members do not

coordinate professionally.

Presentation and

question-answering

responsibilities do not

appear planned.

www.manaraa.com

46

Appendix E

Presentation Rubrics—Instructor Version (after first capstone assignment)

Slides Rubric

 “A” level work “B” level work “C” level work “D”/”F” level work

Content Presentation includes

a title slide, outline

slides in the

introduction and

conclusion, and a

final slide, and it

transitions smoothly

between topics.

Presentation is

missing a title slide,

outline slides in the

introduction or

conclusion, or a final

slide, or it does not

transition smoothly

between topics.

Presentation is

missing multiple

structural slides, or it

is missing one such

slide and does not

transition smoothly

between topics.

Presentation is missing

multiple structural slides

and does not transition

smoothly between

topics.

Professional

Writing

Presentation uses

consistent, formal

writing and is free of

spelling and

grammatical errors.

Presentation contains

a few

inconsistencies,

informalities, spelling

errors and/or

grammatical errors,

but they do not

distract from the

presentation.

Presentation contains

inconsistencies,

informalities, spelling

errors and/or

grammatical errors,

and they sometimes

distract from the

presentation.

Presentation contains

inconsistencies,

informalities, spelling

errors and/or

grammatical errors, and

they regularly distract

from the presentation.

Slide Format All slides use an

unobtrusive theme, a

readable font, and

audience-friendly

colors. Slide

numbers or other

indications of

progress are included.

Most slides use an

unobtrusive theme, a

readable font, and

audience-friendly

colors. Slide numbers

or other indications of

progress are included.

Either few or no

slides use an

unobtrusive theme, a

readable font, and

audience-friendly

colors, or else the

slides lack a visual

indication of

progress.

Few or no slides use an

unobtrusive theme, a

readable font, and

audience-friendly colors.

The slides lack a visual

indication of progress.

Visualization

Usage

Presentation includes

visualizations of all

three contributions,

and all visualizations

are explained.

Presentation includes

visualizations of all

three contributions,

but some of the

visualizations are not

explained.

Presentation is

missing some of the

required

visualizations or none

of the visualizations

are explained.

Presentation does not

include any of the

required visualizations.

Visualization

Quality

The visualizations are

accurate and

polished, and they

effectively convey

hierarchy, grouping

and/or sequence.

The visualizations are

accurate and polished,

but do not effectively

convey hierarchy,

grouping and/or

sequence.

The visualizations

contain inaccuracies

or are unpolished.

The visualizations are

inaccurate and

unpolished.

www.manaraa.com

47

Presentation Content Rubric

 “A” level work “B” level work “C” level work “D”/”F” level work

Audience Presentation is

consistently

appropriate for the

audience in terms of

level of detail and use

of terminology.

Presentation is

usually appropriate

for the audience in

terms of level of

detail and use of

terminology.

Presentation is

sometimes

appropriate for the

audience in terms of

level of detail or use

of terminology.

Presentation is rarely

or never appropriate

for the audience in

terms of level of detail

or use of terminology.

Balance Presentation is

balanced in terms of

team participation,

and all transitions

between team

members are smooth.

Presentation is

balanced in terms of

team participation,

and some transitions

between team

members are smooth.

Presentation is not

balanced in terms of

team participation,

or transitions

between team

members are not

smooth.

Presentation is not

balanced in terms of

team participation, and

transitions between

team members are not

smooth.

Use of Time Presentation covers all

important information

without going short or

long and leaves time

for questions.

Presentation covers

all important

information but runs

a little short or long.

Presentation covers

only some important

information or runs

very short or very

long.

Presentation covers no

important information

or covers only some

important information

while running very

short or very long.

Demo Presentation includes

a polished demo of the

team’s contributions

to OpenMRS and the

team recovers

gracefully from

unexpected

difficulties.

Presentation includes

a unpolished demo of

the team’s

contributions to

OpenMRS, or the

team does not

recover gracefully

from unexpected

difficulties.

Presentation

includes an

unpolished demo of

the team’s

contributions to

OpenMRS, and the

team does not

recover gracefully

from unexpected

difficulties.

Presentation does not

include a demo of the

team’s contributions to

OpenMRS.

Backup Slides Presentation includes

several backup slides

that are relevant to the

types of questions that

may be asked.

Presentation includes

one backup slide that

is relevant to the

types of questions

that may be asked.

Presentation

includes backup

slides that are not

relevant to the types

of questions that

may be asked.

Presentation does not

include backup slides

to support Q&A.

www.manaraa.com

48

Presentation Delivery Rubric

 “A” level work “B” level work “C” level work “D”/”F” level work

Blocking and

Gestures

Speakers move

deliberately, use

effective gestures, and

point at the screen as

necessary; non-

speakers show

attention to the

speaker or slides.

Speakers sometimes

move deliberately,

use effective

gestures, and point at

the screen; non-

speakers show

attention to the

speaker or slides.

The blocking or

gestures are

distracting or absent,

or speakers fail to

point at the screen as

necessary; non-

speakers show

attention to the

speaker or slides.

The team’s blocking

and gestures are

consistently distracting

or absent.

Tempo Presentation pace is

consistent, pauses are

effective, and the

audience is kept

engaged.

Presentation pace is

inconsistent, or

needed pauses are

missing, but the

audience is kept

engaged.

The presentation

rushes or drags, and

the audience

occasionally

becomes lost, bored,

or disengaged.

The pace of the

presentation

consistently leaves

the audience lost,

bored, or disengaged.

Team

Coordination

Presentation and

question-answering

responsibilities appear

planned and team

members coordinate

professionally.

Presentation and

question-answering

responsibilities

appear planned, and

team members

sometimes

coordinate

professionally.

Presentation and

question-answering

responsibilities

appear planned, but

team members do

not coordinate

professionally.

Presentation and

question-answering

responsibilities do not

appear planned.

www.manaraa.com

49

Bibliography

1. Software Engineering 2014: Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering, A Volume of the Computing Curricula Series, Joint
Task Force on Computing Curricula, IEEE Computer Society and Association for
Computing Machinery, 23 February 2015.

2. Understanding by Design. Wiggens, Grant and McTighe Jay, 2005.
3. The Responsive Classroom Discussions: The Inclusion of All Students. Lyman, Frank,

1981. A. Anderson (Ed.), Mainstreaming Digest, College Park: University of Maryland
Press, pp. 109-113.

4. What Makes a Great Software Engineer. Li, Paul Luo, Ko, Andew J., Zhu, Jiamin.
Proceedings of the 37th International Conference on Software Engineering. 2015, pp.
700-710.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2018

	Benchmark Portfolio for SOFT 261: Software Engineering IV
	Suzette Person

	tmp.1528049888.pdf.OsFRX

